THE DEFINITIVE GUIDE TO التعلم العميق

The Definitive Guide to التعلم العميق

The Definitive Guide to التعلم العميق

Blog Article



نتيجةً لذلك، يُمكن استخدام أساليب التعلم العميق لأتمتة المهام التي تتطلّب عادةً ذكاءً بشريًا، مثل وصف الصور أو تحويل ملف صوتي إلى نص.

دعنا نلقِ نظرة إلى تطبيقات التعلم الآلي في بعض المجالات الأساسية:

على سبيل المثال، إذا تم إعطاؤك صورة لحيوان غير معروف وكان عليك تصنيفه، فستقارن هذا الحيوان بالحيوانات التي تعرفها بالفعل.

وهي طريقة سهلة عند العمل على بيانات مثل الوثائق الطويلة التي من المفترض أن تستغرق وقتًا طويلاً جدًا لكي يقرأها البشر ويسموها.

يتكون هذا الكتاب من ستة فصول، سنشير إلى محتوى هذه الفصول بإيجاز كما في أدناه:

خوارزميات التعلم العميق هي خوارزميات كثيفة الحوسبة وتتطلب بنيةً أساسيةً ذات قدرة حوسبة كافية لتعمل بشكل صحيح. وإلا، فستستغرق وقتًا طويلاً لمعالجة النتائج. 

يتم تطبيق التعلم العميق في مجال التعلم الآلي لتحليل وتفسير البيانات بصورة أكثر تفصيلًا، وتحقيق نتائج أفضل في تحقيق الأهداف المحددة. الشكل التالي يوضح استخدام التعلم العميق في مجال التعلم الآلي:

على سبيل المثال، شبكات التعلم العميق ذات الطبقات المخفيّة المُتعددة قادرة على تعلُّم الميزات والتمثيلات الهرميّة، تعرّف على المزيد مما يجعلها مناسبة تمامًا للمهام التي تتضمن أنماطًا مُعقّدة.

يلعب التعلم العميق دورًا حاسمًا في تطوير المركبات ذاتية القيادة، حيث تقوم الشبكات العصبيّة بمعالجة بيانات الاستشعار، مما يمكّن المركبات من إدراك بيئتها والاستجابة لها.

تجد أساليب تعلّم الآلة صعوبةً في معالجة البيانات غير المهيكلة، مثل المستندات النصية، وذلك لأن مجموعة البيانات الخاصة بالتدريب يمكن أن تحتوي على فروق واختلافات لا حصر لها. ومن ناحية أخرى، تستطيع نماذج التعلم العميق فهم البيانات غير المهيكلة وتقديم ملاحظات عامة بدون استخراج السمات يدويًا.

تحتوي الشبكة العصبونية الاصطناعية على كثير من العُقَد التي تدخل البيانات فيها. هذه العُقَد تمثل طبقة الإدخال للنظام.

في التعلم الآلي، الحتمية هي إستراتيجية مستخدمة في أثناء تطبيق أساليب التعلم الموضحة أعلاه. أي من أساليب التدريب تحت الإشراف وبدون إشراف وغيرها يمكن جعلها حتمية اعتمادًا على النتائج المطلوبة من جانب الأعمال.

وقد أصبح التعلم العميق ذا أهميّة مُتزايدة في مختلف جوانب الحياة الحديثة، وفي العديد من المجالات.

تواجه التعلم العميق تحديات مستمرة مثل معالجة حجم البيانات الكبيرة وضمان خصوصية البيانات.

Report this page