THE FACT ABOUT تقنية التعلم العميق THAT NO ONE IS SUGGESTING

The Fact About تقنية التعلم العميق That No One Is Suggesting

The Fact About تقنية التعلم العميق That No One Is Suggesting

Blog Article



تعمل الطبقات المخفية في الشبكات العصبونية العميقة بنفس الطريقة. إذا كانت خوارزمية التعلم العميق تحاول تصنيف صورة لحيوان، فإن كل طبقة من طبقاتها المخفية تعالج سمةً مختلفةً للحيوان وتحاول تصنيفه بدقة.

تتمثّل المُهمة الأساسيّة لعلم التعلم العميق في تدريب أجهزة الكمبيوتر على التفكير والتعلُّم تمامًا كما يفعل البشر، حيث تقود تقنيّة التعلم العميق العديد من تطبيقات الذكاء الاصطناعي المستخدمة في المنتجات اليومية، مثل المساعدين الرقميين، وأجهزة التحكم عن بُعد التي تعمل بالصوت، واكتشاف الاحتيال في بطاقات الائتمان، والتعرُّف التلقائي على الوجه، والتقنيّات الناشئة مثل السيارات ذاتيّة القيادة والواقع الافتراضي والمزيد.

على سبيل المثال، إذا تم إعطاؤك صورة لحيوان غير معروف وكان عليك تصنيفه، فستقارن هذا الحيوان بالحيوانات التي تعرفها بالفعل.

تسجيل الدخول حساب جديد الرئيسية كل الأنشطة بحث تابعنا تابعنا على تويتر تابعنا على فيسبوك تابعنا على يوتيوب تعلم البرمجة موسوعة حسوب المزيد

وبالمثل، فإن الشبكات العصبونية للتعلم العميق، أو الشبكات العصبونية الاصطناعية، تتكون من طبقات عديدة من الخلايا العصبية الاصطناعية التي تعمل معًا داخل الكمبيوتر.

تسمى هذه العملية بالتعلم الخاضع للإشراف. في التعلم الخاضع للإشراف، لا تتحسن دقة النتائج إلا إذا كان لديك مجموعة بيانات واسعة ومتنوعة بما فيه الكفاية. على سبيل المثال، قد تحدد الخوارزمية القطط السوداء بدقة ولكنها قد تخفق في تحديد القطط البيضاء لأن مجموعة بيانات التدريب تحتوي على صور أكثر للقطط السوداء.

تسمية البيانات هي عملية يتم فيها تصنيف بيانات المدخلات بالنسبة لقيم المخرجات المعرّفة المقابلة لها. يلزم تسمية بيانات التدريب بالنسبة لأسلوب التعلم تحت الإشراف. على سبيل المثال، ملايين من صور التفاح والموز يجب وسمها بعلامة باستخدام الكلمتين "تفاح" أو "موز". ثم تستطيع تطبيقات التعلم الآلي استخدام بيانات التدريب هذه لتخمين اسم الفاكهة عند إعطائها صورة فاكهة.

كتب التعلم العميق كتاب التعلم العميق : من الأساسيات حتى بناء شبكة عصبية عميقة بلغة البايثون

تجد أساليب تعلّم الآلة صعوبةً في معالجة البيانات غير المهيكلة، مثل المستندات النصية، وذلك لأن مجموعة البيانات الخاصة بالتدريب يمكن أن تحتوي على فروق واختلافات لا حصر لها. ومن ناحية أخرى، تستطيع نماذج التعلم العميق فهم البيانات غير المهيكلة وتقديم ملاحظات عامة بدون تقنية التعلم العميق استخراج السمات يدويًا.

وتعد التقنيات المتعلقة بالتعلم العميق جزءًا أساسيًا من مجال الذكاء الاصطناعي، حيث تمتلك القدرة على فهم وتحليل البيانات الكبيرة بصورة أكثر دقة وفعالية مقارنة بالتقنيات التقليدية.

There's an issue amongst Cloudflare's cache and your origin World wide web server. Cloudflare displays for these mistakes and mechanically investigates the cause.

تطوير نماذج تعلم عميق قابلة للتفسير وتوفير شفافية في عمل الأنظمة العميقة وتفسير النتائج والقرارات.

هذا يساعد في تطوير تطبيقات متقدمة تستفيد من التعلم الآلي في مجال اللغة العربية، مثل تطبيقات التعلم الآلي في التعليم ومعالجة اللغة الطبيعية.

ومن ناحية أخرى، فإن أولئك الذين ينتجون نطاقًا أوسع من الإجابات لديهم المزيد من العُقَد. 

Report this page